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Multi-class classification: setting

Framework
▶ observation X ∈ X and Y ∈ Y = {1, . . . ,K}
▶ classifier f : X → Y
▶ misclassification risk R(f) = P(f(X) ̸= Y )

Optimal rule
▶ conditional probabilities pk(X) = P(Y = k

∣∣X)

▶ Bayes classifier f∗(·) ∈ argmaxk∈Y pk(·)
▶ oracle risk R∗ = R(f∗) = minf R(f)

Goal
▶ learning sample (Xi, Yi)1≤i≤n and new observation Xn+1

▶ empirical classification rule f̂ based on the learning sample
▶ f̂(Xn+1) prediction of the associated label
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Multi-class classification: plug-in approach

Plug-in rule
▶ build p̂k estimators of pk
▶ consider f̂(·) ∈ argmaxk∈Y p̂k(·)

Excess risk
▶ one can show that

E
[
R(f̂)

]
−R∗ ≤

K∑
k=1

E [|p̂k(X)− pk(X)|]

▶ consistency of p̂k ⇒ consistency of f̂
↪→ E

[
R(f̂)

]
→ R∗
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Multi-class classification through
awareness under DP constraint
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Fairness in multi-class classification: group fairness approach

Framework
▶ obervation (X,S) and Y ∈ Y,
▶ S ∈ {−1, 1} sensitive attribute
▶ Fairness through awareness: f → prediction f(X,S)

Definition of fairness
▶ Demographic parity (DP), for each k ∈ Y

P (f(X,S) = k|S = 1) = P (f(X,S) = k|S = −1)

▶ Equalized odds, for each k ∈ Y

P (f(X,S) = k|S = 1, Y = k) = P (f(X,S) = k|S = −1, Y = k)
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Main approaches to enforce fairness in classification

Pre-processing
▶ find a feature representation z 7→ ϕ(z)
▶ such that ϕ(Z) independent on S
▶ adversarial methods Zhang et al (2018), Tavker et al (2020)

In-processing
▶ given a set of predictor F , solve

f ∈ argmin
f∈F

R̂(f) + λĈ(f),

with R̂(f) empirical risk, Ĉ(f) empirical fairness constraints
▶ E.R.M. with convex loss Donini et al (2018), Ye and Xie (2020)
▶ E.R.M. with randomized classifiers Agarwal et al (2018)

Post-processing
▶ given a pre-built predictor f , not necessary fair
▶ find T̂ s.t. T̂ (f) satisfies a desired fairness constraint
▶ based on optimal transport Chiapa et al (2020), Xian et al (2023)
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Multi-class classification under DP constraint

Notations
▶ S = {−1, 1}, and Y = {1, . . . ,K}
▶ πs = P(S = s) > 0, and pk(X,S) = P(Y = k|X,S)

▶ classifier f → prediction f(X,S) ∈ Y

Problem
▶ DP constraint, for each k ∈ Y∑

s∈S
sP (f(X,S) = k|S = s) = 0

▶ f∗ ∈ argminf{P(f(X,S) ̸= Y ), f satisfies DP}
▶ lagrangian associated to the minimization problem

Rλ(f) = P (f(X,S) ̸= Y )+
K∑
k=1

λk

∑
s∈S

sP(f(X,S) = k|S = s)
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Optimal fair classifier

Continuity assumption
▶ t 7→ P(pk(X,S)− pj(X,S) ≤ t|S = s) is continuous

Optimal predictor
▶ the optimal fair classifier f∗ can be characterized as

f∗(x, s) ∈ argmax
k

(
pk(x, s)−

s

πs
λ∗
k

)
▶ λ∗

k are lagrange multiplier defined as

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX|S=s

[
max
k

(πspk(X, s)− sλk)

]

Proposition
Under the continuity assumption, we have

f∗ ∈ argmin
f

Rλ∗(f)
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Optimal predictor: sketch of the proof (1/2)

▶ for each λ ∈ RK , consider the Lagrangian Rλ(f) defined as

P(f(X,S) ̸= Y ) +

K∑
k=1

λk

∑
s∈S

sPX|S=s (f(X,S) = k)

▶ we have that Rλ(f) can be expressed as

1−
K∑
k=1

∑
s∈S

EX|S=s

[
(πspk(X,S)− sλk)1{f(X,S)=k}

]
▶ we deduce that f∗

λ ∈ argminf Rλ(f) is characterized as

f∗
λ(x, s) = arg max

k∈{1,...,K}

(
pk(X,S)− sλk

πs

)
,

and

Rλ(f
∗
λ) = 1−

K∑
k=1

∑
s∈S

EX|S=s [max (πspk(X,S)− sλk)]
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Optimal predictor: sketch of the proof (2/2)

▶ consider λ∗ argminλH(λ) with

H(λ) =

K∑
k=1

∑
s∈S

EX|S=s [max (πspk(X,S)− sλk)]

▶ observe that λ∗ ∈ argmaxλRλ (f
∗
λ)

▶ under continuity assumption, λ 7→ H(λ) is differentiable and
the first order condition shows that f∗

λ∗ satisfies DP

▶ therefore, with the weak duality, we obtain that f∗ = f∗
λ∗
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Data driven procedure: post-processing approach

Objective

▶ estimate f∗(x, s) ∈ argmaxk

(
pk(x, s)− s

πs
λ∗
k

)
Plug-in approach
▶ labeled sample → estimate pk
▶ unlabeled sample (X1, S1), . . . , (XN , SN )

▶ {S1, . . . , SN} → estimate πs by their empirical frequencies
▶ {X1, . . . , XN} → estimate parameter λ∗

k

Randomization
▶ fairness guarantee requires continuity assumption
▶ introduce ζ ∼ U[0,u] independent of (X,S), u → 0

▶ p̄k(X,S, ζ) = p̂k(X,S) + ζ
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Post-processing estimator: randomized classifier

Randomized fair classifier
▶ (X1, . . . , XN ) → (Xs

1 , . . . , X
s
Ns

) i.i.d. from X|S = s

▶ estimator λ̂

λ̂ ∈ arg min
λ∈RK

∑
s∈S

1

Ns

Ns∑
i=1

max
k

(
π̂sp̄k(X

s
i , s, ζ

s
k,i)− sλk

)
▶ resulting classifier

f̂(x, s) ∈ argmax
k∈Y

(
p̄k(x, s, ζk)−

s

π̂s
λ̂k

)
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Theoretical guarantees: fairness guarantee

Unfairness measure

U(f) = max
k

|P (f(X,S) = k|S = 1)− P (f(X,S) = k|S = −1)|

Distribution free-result
There exists C depending only on K and πs such that for any
estimator p̂k

E
[
U(f̂)

]
≤ CN−1/2
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Theoretical guarantees: consistency

Measure of performance
▶ f∗ ∈ argminf Rλ∗(f)

Rλ∗(f) = P (f(X,S) ̸= Y )+

K∑
k=1

λ∗
k

∑
s∈S

sP(f(X,S) = k|S = s)

▶ ∥p̂− p∥1 =
∑K

k=1 |p̂k(X,S)− pk(X,S)|

Theorem
Under continuity assumption

E
[
Rλ∗(f̂)−Rλ∗(f∗)

]
≲ E [∥p̂− p∥1] + u+N−1/2

▶ assume that p̂k are consistent and u → 0
↪→ f̂ is consistent
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Extension to ε-fairness (1/2)

Approximate fairness: ε-DP
▶ f is ε-fair iff U (f) ≤ ε

Optimal ε-fair classifier
▶ f∗

ε ∈ argminf{P(f(X,S) ̸= Y ), f satisfies ε− DP}

▶
(
λ∗(1), λ∗(2)) minimizer of

∑
s∈S

EX|S=s

[
max

k

(
πspk(X, s)− s

(
λ
(1)
k − λ

(2)
k

))]
+ε

K∑
k=1

(
λ
(1)
k + λ

(2)
k

)

▶ f∗
ε (x, s) ∈ argmaxk

(
pk(x, s)− s

πs

(
λ
∗(1)
k − λ

∗(2)
k

))
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Extension to ε-fairness (2/2)

Optimal ε fair predictor: properties
▶ λ

∗(1)
k λ

∗(2)
k = 0 and λ

∗(1)
k + λ

∗(2)
k ≥ 0, k ∈ [K]

▶ if U
(
f∗
Bayes

)
≤ ε then f∗

ε = f∗
Bayes, and λ∗(1) = λ∗(2) = 0

▶ else U (f∗
ε ) = ε

Estimation
▶ same procedure as for exact fairness

▶ E
[
U(f̂ε)

]
≤ ε+ CN−1/2

▶ fairness and risk guarantees
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ε-fairness: results

Unfairness
Let Nmin = min(N−1, N1), under mild assumptions with
probability larger than 1-δ, we have that λ̂(1)

k λ̂
(2)
k = 0 and either∣∣∣U(f̂ε)− ε

∣∣∣ ≤ C0
log(1/δ)√

Nmin
,

or
U(f̂ε) < ε− C0

log(1/δ)√
Nmin

, and λ̂(1) = λ̂(2) = 0

Fast rates
▶ if pk(X,S)− pj(X,S) admits a bounded density

E
[
Rλ∗(f̂)−Rλ∗(f∗)

]
≲ E

[
∥p̂− p∥2∞

]
+ u+N−1/2
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Numerical illustration: model

Synthetic data: Gaussian mixture
▶ let ck ∼ Ud(−1, 1), and µk

1, . . . , µ
k
m ∼ Nd(0, Id)

▶ covariates: (X|Y = k) ∼ 1
m

∑m
i=1Nd(c

k + µk
i , Id)

▶ sensitive feature:

(S|Y = k) ∼ 2 · B(p)− 1, k ≤ ⌊K/2⌋
(S|Y = k) ∼ 2 · B(1− p)− 1, k > ⌊K/2⌋

▶ fair data p = 0.5 / unfair data p ∈ {0, 1}
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Numerical illustration: results

Scheme
▶ generate 5000 examples
▶ train/test/unlabeled = 60%/20%/20%
▶ estimate pk on train dataset using random forests
▶ build f̂ using unlabeled dataset
▶ evaluated Acc(f̂) and U(f̂) using test dataset
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Regression through awareness under
DP constraint
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Regression under DP constraint

Regression framework
▶ observation (X,S, Y ), Y ∈ R
▶ Y = η(X,S) + ε with E [ε|X,S] = 0

▶ prediction rule: f : X × S → R
▶ L2 risk R(f) = E

[
(Y − f((X,S))2

]
▶ optimal rule E [Y |X,S] = η(X,S)

DP constraint
▶ exact DP constraint

sup
t∈R

|P(f(X,S) ≤ t|S = 1)− P(f(X,S) ≤ t|S = −1)| = 0

▶ optimal fair predictor f∗ defined as

f∗ ∈ argmin
f

{R(f), f satisfies DP}
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Related works

Regression under DP constraint
▶ two main approaches
▶ approach that relies on optimal transport

Chzhen and Schreuder, (2020), Chzhen et al. (2020), Le Gouic et
al. (2020)

▶ approach that relies on discretization
Agarwall (2019), Chzhen et al. (2020), Chzhen et al. (2024)
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Discretization (Chzhen et al. (2020))

Discretization
▶ assume that |Y | ≤ 1

▶ consider a grid GL = { l
L , l = −L, . . . , L}, L > 0

▶ discretized predictor fL(x, s) ∈ GL

DP constraint for discretized predictor
▶ f∗

L statisfies DP iff

max
l∈{−L,...,L}

∑
s∈S

sPX|S=s

(
fL(X,S) =

l

L

)
= 0

▶ f∗
L argminfL {R(fL), fL satisfies DP}

▶ proposal : estimate f∗
L rather than f∗

Approximation property

R(f∗) ≤ R(f∗
L) ≤ R(f∗) + 2

√
Var(Y )

L
+

1

L2
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Optimal discretized fair predictor

Continuity assumption
▶ t 7→ P(η(X, s) ≤ t|S = s) is continuous

Optimal predictor
▶ f∗

L can be characterized as

f∗
L(x, s) ∈ argmin

l

(
πs

(
η(x, s)− l

L

)2

− sλ∗
l

)
1

L
,

with λ∗ = (λ∗
−L, . . . λ

∗
L)

λ∗ ∈ arg min
λ∈R2L+1

∑
s∈S

EX|S=smax
l

(
sλ− πs

(
η(x, s)− l

L

))

Estimation
▶ similar to the post-processing procedure in classification
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Data driven procedure

Plug-in approach
▶ similar to the post-processing procedure in classification
▶ estimate η (with randomization) → η̂

▶ estimate πs → π̂s and λ → λ̂

f̂L ∈ argmin
l

(
π̂s

(
η̂(x, s)− l

L

)2

− sλ̂l

)
1

L

Properties

▶ E
[
U(f̂L)

]
≤ C

√
L

N

▶ L = N−1/4, and E [R(η̂)−R(η)] → 0, then

E
[
R(f̂L)

]
→ R(f∗)



26/26

Perspective

DP multiclass classification
▶ exact and ε-fairness
▶ plug-in approach
▶ extension to multiple sensitive attributes
▶ fairness and risk guarantee

Some extension
▶ extension to prediction without sensitive attribute
▶ extension to other fairness measures
▶ study of optimal rates of convergence


