Fairness guarantee in multi-class classification and regression

Christophe Denis

Joint work with: E. Chzhen, R. Elie, M. Hebiri, F. Hu, L. Oneto, and M. Pontil

SAMM, Université Paris1 Panthéon-Sorbonne

16/01/2025

Journée de Statistique Mathématiques, IHP

Multi-class classification: setting

Framework

- observation $X \in \mathcal{X}$ and $Y \in \mathcal{Y} = \{1, \dots, K\}$
- classifier $f : \mathcal{X} \to \mathcal{Y}$
- misclassification risk $R(f) = \mathbb{P}(f(X) \neq Y)$

Optimal rule

- conditional probabilities $p_k(X) = \mathbb{P}(Y = k | X)$
- ▶ Bayes classifier $f^*(\cdot) \in \arg \max_{k \in \mathcal{Y}} p_k(\cdot)$
- oracle risk $R^* = R(f^*) = \min_f R(f)$

Goal

- ▶ learning sample $(X_i, Y_i)_{1 \le i \le n}$ and new observation X_{n+1}
- empirical classification rule \widehat{f} based on the learning sample
- $\hat{f}(X_{n+1})$ prediction of the associated label

Multi-class classification: plug-in approach

Plug-in rule

▶ build \hat{p}_k estimators of p_k

• consider
$$\hat{f}(\cdot) \in \arg \max_{k \in \mathcal{Y}} \hat{p}_k(\cdot)$$

Excess risk

one can show that

$$\mathbb{E}\left[R(\hat{f})\right] - R^* \le \sum_{k=1}^{K} \mathbb{E}\left[|\hat{p}_k(X) - p_k(X)|\right]$$

• consistency of
$$\hat{p}_k \Rightarrow$$
 consistency of \hat{f}
 $\hookrightarrow \mathbb{E}\left[R(\hat{f})\right] \rightarrow R^*$

Multi-class classification through awareness under DP constraint

Framework

- obervation (X, S) and $Y \in \mathcal{Y}$,
- $S \in \{-1, 1\}$ sensitive attribute
- ▶ Fairness through awareness: $f \rightarrow$ prediction f(X, S)

Definition of fairness

• Demographic parity (DP), for each $k \in \mathcal{Y}$

$$\mathbb{P}\left(f(X,S)=k|S=1\right)=\mathbb{P}\left(f(X,S)=k|S=-1\right)$$

• Equalized odds, for each $k \in \mathcal{Y}$

 $\mathbb{P}\left(f(X,S)=k|S=1,Y=k\right)=\mathbb{P}\left(f(X,S)=k|S=-1,Y=k\right)$

Main approaches to enforce fairness in classification

Pre-processing

- find a feature representation $z \mapsto \phi(z)$
- such that $\phi(Z)$ independent on S
- adversarial methods Zhang et al (2018), Tavker et al (2020)

In-processing

• given a set of predictor \mathcal{F} , solve

$$f \in \arg\min_{f \in \mathcal{F}} \hat{R}(f) + \lambda \hat{C}(f),$$

with $\hat{R}(f)$ empirical risk, $\hat{C}(f)$ empirical fairness constraints

- E.R.M. with convex loss Donini et al (2018), Ye and Xie (2020)
- E.R.M. with randomized classifiers Agarwal et al (2018)

Post-processing

- given a pre-built predictor f, not necessary fair
- ▶ find \hat{T} s.t. $\hat{T}(f)$ satisfies a desired fairness constraint
- ▶ based on optimal transport Chiapa *et al* (2020), Xian *et al* (2023)

Multi-class classification under DP constraint

Notations

•
$$S = \{-1, 1\}$$
, and $\mathcal{Y} = \{1, \dots, K\}$
• $\pi_s = \mathbb{P}(S = s) > 0$, and $p_k(X, S) = \mathbb{P}(Y = k | X, S)$
• classifier $f \to \text{prediction } f(X, S) \in \mathcal{Y}$

Problem

• DP constraint, for each $k \in \mathcal{Y}$

$$\sum_{s\in\mathcal{S}}s\mathbb{P}\left(f(X,S)=k|S=s\right)=0$$

f^{*} ∈ arg min_{*f*}{ℙ(*f*(*X*, *S*) ≠ *Y*), *f* satisfies DP}
 lagrangian associated to the minimization problem

$$\mathcal{R}_{\lambda}(f) = \mathbb{P}\left(f(X,S) \neq Y\right) + \sum_{k=1}^{K} \lambda_k \sum_{s \in \mathcal{S}} s \mathbb{P}(f(X,S) = k | S = s)$$

Optimal fair classifier

Continuity assumption

▶ $t \mapsto \mathbb{P}(p_k(X,S) - p_j(X,S) \le t | S = s)$ is continuous

Optimal predictor

• the optimal fair classifier f^* can be characterized as

$$f^*(x,s) \in \arg\max_k \left(p_k(x,s) - \frac{s}{\pi_s} \lambda_k^* \right)$$

• λ_k^* are lagrange multiplier defined as

$$\lambda^* \in \arg\min_{\lambda \in \mathbb{R}^K} \sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[\max_k (\pi_s p_k(X, s) - s\lambda_k) \right]$$

Proposition

Under the continuity assumption, we have

 $f^* \in \arg\min_f \mathcal{R}_{\lambda^*}(f)$

Optimal predictor: sketch of the proof (1/2)

▶ for each $\lambda \in \mathbb{R}^{K}$, consider the Lagrangian $\mathcal{R}_{\lambda}(f)$ defined as

$$\mathbb{P}(f(X,S) \neq Y) + \sum_{k=1}^{K} \lambda_k \sum_{s \in S} s \mathbb{P}_{X|S=s} \left(f(X,S) = k \right)$$

• we have that $\mathcal{R}_{\lambda}(f)$ can be expressed as

$$1 - \sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[\left(\pi_s p_k(X, S) - s\lambda_k \right) \mathbb{1}_{\{f(X,S)=k\}} \right]$$

▶ we deduce that $f^*_{\lambda} \in \arg\min_f \mathcal{R}_{\lambda}(f)$ is characterized as

$$f_{\lambda}^{*}(x,s) = \arg \max_{k \in \{1,\dots,K\}} \left(p_{k}(X,S) - \frac{s\lambda_{k}}{\pi_{s}} \right),$$

and

$$\mathcal{R}_{\lambda}(f_{\lambda}^{*}) = 1 - \sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[\max \left(\pi_{s} p_{k}(X, S) - s \lambda_{k} \right) \right]$$

• consider $\lambda^* \arg \min_{\lambda} H(\lambda)$ with

$$H(\lambda) = \sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[\max \left(\pi_s p_k(X, S) - s \lambda_k \right) \right]$$

- observe that $\lambda^* \in \arg \max_{\lambda} \mathcal{R}_{\lambda}(f_{\lambda}^*)$
- under continuity assumption, $\lambda \mapsto H(\lambda)$ is differentiable and the first order condition shows that $f^*_{\lambda^*}$ satisfies DP
- ▶ therefore, with the weak duality, we obtain that $f^* = f^*_{\lambda^*}$

Data driven procedure: *post-processing approach*

Objective

• estimate
$$f^*(x,s) \in \arg \max_k \left(p_k(x,s) - \frac{s}{\pi_s} \lambda_k^* \right)$$

Plug-in approach

- ▶ labeled sample \rightarrow estimate p_k
- unlabeled sample $(X_1, S_1), \ldots, (X_N, S_N)$
- ▶ ${S_1, \ldots, S_N} \rightarrow$ estimate π_s by their empirical frequencies
- $\{X_1, \ldots, X_N\} \rightarrow$ estimate parameter λ_k^*

Randomization

- fairness guarantee requires continuity assumption
- ▶ introduce $\zeta \sim \mathcal{U}_{[0,u]}$ independent of (X,S), $u \to 0$
- $\blacktriangleright \ \bar{p}_k(X,S,\zeta) = \hat{p}_k(X,S) + \zeta$

Post-processing estimator: randomized classifier

Randomized fair classifier

▶
$$(X_1, ..., X_N) \to (X_1^s, ..., X_{N_s}^s)$$
 i.i.d. from $X|S = s$
▶ estimator $\hat{\lambda}$

$$\hat{\lambda} \in \arg\min_{\lambda \in \mathbb{R}^K} \sum_{s \in \mathcal{S}} \frac{1}{N_s} \sum_{i=1}^{N_s} \max_k \left(\hat{\pi}_s \bar{p}_k(X_i^s, s, \zeta_{k,i}^s) - s \lambda_k \right)$$

▶ resulting classifier

$$\hat{f}(x,s) \in \arg \max_{k \in \mathcal{Y}} \left(\bar{p}_k(x,s,\zeta_k) - \frac{s}{\hat{\pi}_s} \hat{\lambda}_k \right)$$

Unfairness measure

$$\mathcal{U}(f) = \max_{k} \left| \mathbb{P}\left(f(X,S) = k | S = 1 \right) - \mathbb{P}\left(f(X,S) = k | S = -1 \right) \right|$$

Distribution free-result

There exists C depending only on K and π_s such that for any estimator \hat{p}_k

$$\mathbb{E}\left[\mathcal{U}(\hat{f})\right] \le CN^{-1/2}$$

Measure of performance

 $\blacktriangleright f^* \in \arg\min_f \mathcal{R}_{\lambda^*}(f)$

$$\mathcal{R}_{\lambda^*}(f) = \mathbb{P}\left(f(X,S) \neq Y\right) + \sum_{k=1}^K \lambda_k^* \sum_{s \in \mathcal{S}} s \mathbb{P}(f(X,S) = k | S = s)$$

•
$$\|\hat{\mathbf{p}} - \mathbf{p}\|_1 = \sum_{k=1}^K |\hat{p}_k(X, S) - p_k(X, S)|$$

Theorem

Under continuity assumption

$$\mathbb{E}\left[\mathcal{R}_{\lambda^*}(\hat{f}) - \mathcal{R}_{\lambda^*}(f^*)\right] \lesssim \mathbb{E}\left[\|\hat{\mathbf{p}} - \mathbf{p}\|_1\right] + u + N^{-1/2}$$

▶ assume that \hat{p}_k are consistent and $u \to 0$ $\hookrightarrow \hat{f}$ is consistent

Extension to ε -fairness (1/2)

Approximate fairness: ε -DP

• f is ε -fair iff $\mathcal{U}(f) \leq \varepsilon$

Optimal ε -fair classifier

$$\sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \left[\max_{k} \left(\pi_s p_k(X, s) - s \left(\lambda_k^{(1)} - \lambda_k^{(2)} \right) \right) \right] + \varepsilon \sum_{k=1}^K \left(\lambda_k^{(1)} + \lambda_k^{(2)} \right)$$

•
$$f_{\varepsilon}^*(x,s) \in \arg\max_k \left(p_k(x,s) - \frac{s}{\pi_s} \left(\lambda_k^{*(1)} - \lambda_k^{*(2)} \right) \right)$$

Optimal ε fair predictor: properties

$$\begin{array}{l} \flat \ \lambda_k^{*(1)}\lambda_k^{*(2)} = 0 \ \text{and} \ \lambda_k^{*(1)} + \lambda_k^{*(2)} \geq 0, \ k \in [K] \\ \\ \flat \ \text{if} \ \mathcal{U}\left(f_{\text{Bayes}}^*\right) \leq \varepsilon \ \text{then} \ f_{\varepsilon}^* = f_{\text{Bayes}}^*, \ \text{and} \ \lambda^{*(1)} = \lambda^{*(2)} = 0 \\ \\ \\ \blacktriangleright \ \text{else} \ \mathcal{U}\left(f_{\varepsilon}^*\right) = \varepsilon \end{array}$$

Estimation

same procedure as for exact fairness

$$\blacktriangleright \mathbb{E}\left[\mathcal{U}(\hat{f}_{\varepsilon})\right] \leq \varepsilon + CN^{-1/2}$$

fairness and risk guarantees

Unfairness

Let $N_{\min} = \min(N_{-1}, N_1)$, under mild assumptions with probability larger than 1- δ , we have that $\hat{\lambda}_k^{(1)} \hat{\lambda}_k^{(2)} = 0$ and either

$$\left| \mathcal{U}(\hat{f}_{\varepsilon}) - \varepsilon \right| \le C_0 \frac{\log(1/\delta)}{\sqrt{N_{\min}}},$$

or

$$\mathcal{U}(\hat{f}_{\varepsilon}) < \varepsilon - C_0 \frac{\log(1/\delta)}{\sqrt{N_{\min}}}, \text{ and } \hat{\lambda}^{(1)} = \hat{\lambda}^{(2)} = 0$$

Fast rates

• if $p_k(X,S) - p_j(X,S)$ admits a bounded density

$$\mathbb{E}\left[\mathcal{R}_{\lambda^*}(\hat{f}) - \mathcal{R}_{\lambda^*}(f^*)\right] \lesssim \mathbb{E}\left[\|\hat{\mathbf{p}} - \mathbf{p}\|_{\infty}^2\right] + u + N^{-1/2}$$

Numerical illustration: model

Synthetic data: Gaussian mixture

- let $c^k \sim \mathcal{U}_d(-1, 1)$, and $\mu_1^k, \dots, \mu_m^k \sim \mathcal{N}_d(0, I_d)$
- covariates: $(X|Y=k) \sim \frac{1}{m} \sum_{i=1}^{m} \mathcal{N}_d(c^k + \mu_i^k, I_d)$
- sensitive feature:

$$\begin{aligned} (S|Y=k) &\sim 2 \cdot \mathcal{B}(p) - 1, k \leq \lfloor K/2 \rfloor \\ (S|Y=k) &\sim 2 \cdot \mathcal{B}(1-p) - 1, k > \lfloor K/2 \rfloor \end{aligned}$$

• fair data
$$p=0.5$$
 / unfair data $p\in\{0,1\}$

Numerical illustration: results

Scheme

- generate 5000 examples
- train/test/unlabeled = 60%/20%/20%
- estimate p_k on *train* dataset using random forests
- build \hat{f} using *unlabeled* dataset
- \blacktriangleright evaluated $\operatorname{Acc}(\widehat{f})$ and $\mathcal{U}(\widehat{f})$ using test dataset

Regression through awareness under DP constraint

Regression under DP constraint

Regression framework

▶ observation (X, S, Y), $Y \in \mathbb{R}$

•
$$Y = \eta(X, S) + \varepsilon$$
 with $\mathbb{E}[\varepsilon | X, S] = 0$

▶ prediction rule:
$$f : \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$$

•
$$L_2$$
 risk $R(f) = \mathbb{E}\left[(Y - f((X, S))^2\right]$

• optimal rule
$$\mathbb{E}\left[Y|X,S\right] = \eta(X,S)$$

DP constraint

exact DP constraint

 $\sup_{t \in \mathbb{R}} |\mathbb{P}(f(X, S) \le t | S = 1) - \mathbb{P}(f(X, S) \le t | S = -1)| = 0$

optimal fair predictor f* defined as

$$f^* \in \arg\min_f \{R(f), f \text{ satisfies DP}\}$$

Regression under DP constraint

- two main approaches
- approach that relies on optimal transport Chzhen and Schreuder, (2020), Chzhen *et al.* (2020), Le Gouic *et al.* (2020)
- approach that relies on discretization
 Agarwall (2019), Chzhen *et al.* (2020), Chzhen *et al.* (2024)

Discretization (Chzhen et al. (2020))

Discretization

- \blacktriangleright assume that $|Y| \leq 1$
- consider a grid $\mathcal{G}_L = \{\frac{l}{L}, \ l = -L, \dots, L\}$, L > 0
- discretized predictor $f_L(x,s) \in \mathcal{G}_L$

DP constraint for discretized predictor

• f_L^* statisfies DP *iff*

$$\max_{l \in \{-L,\dots,L\}} \sum_{s \in \mathcal{S}} s \mathbb{P}_{X|S=s} \left(f_L(X,S) = \frac{l}{L} \right) = 0$$

- $f_L^* \arg \min_{f_L} \{ R(f_L), f_L \text{ satisfies DP} \}$
- proposal : estimate f_L^* rather than f^*

Approximation property

$$R(f^*) \le R(f_L^*) \le R(f^*) + 2\frac{\sqrt{\operatorname{Var}(Y)}}{L} + \frac{1}{L^2}$$

Optimal discretized fair predictor

Continuity assumption

▶
$$t \mapsto \mathbb{P}(\eta(X,s) \le t | S = s)$$
 is continuous

Optimal predictor

• f_L^* can be characterized as

$$f_L^*(x,s) \in \arg\min_l \left(\pi_s \left(\eta(x,s) - \frac{l}{L}\right)^2 - s\lambda_l^*\right) \frac{1}{L},$$

with $\lambda^* = (\lambda^*_{-L}, \dots \lambda^*_L)$

$$\lambda^* \in \arg\min_{\lambda \in \mathbb{R}^{2L+1}} \sum_{s \in \mathcal{S}} \mathbb{E}_{X|S=s} \max_l \left(s\lambda - \pi_s \left(\eta(x,s) - \frac{l}{L} \right) \right)$$

Estimation

similar to the post-processing procedure in classification

Data driven procedure

Plug-in approach

- similar to the post-processing procedure in classification
- estimate η (with randomization) $\rightarrow \hat{\eta}$
- estimate $\pi_s \to \hat{\pi}_s$ and $\lambda \to \hat{\lambda}$

$$\hat{f}_L \in \arg\min_l \left(\hat{\pi}_s \left(\hat{\eta}(x,s) - \frac{l}{L} \right)^2 - s \hat{\lambda}_l \right) \frac{1}{L}$$

Properties

•
$$\mathbb{E}\left[\mathcal{U}(\hat{f}_L)\right] \leq C\sqrt{\frac{L}{N}}$$

• $L = N^{-1/4}$, and $\mathbb{E}\left[R(\hat{\eta}) - R(\eta)\right] \rightarrow 0$, then
 $\mathbb{E}\left[R(\hat{f}_L)\right] \rightarrow R(f^*)$

DP multiclass classification

- exact and ε-fairness
- plug-in approach
- extension to multiple sensitive attributes
- fairness and risk guarantee

Some extension

- extension to prediction without sensitive attribute
- extension to other fairness measures
- study of optimal rates of convergence