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Content of the talk

Objectives

to highlight fairness issues in data science

to overview some statistical approaches

to provide examples of statistical contributions

Plan of the talk

A (biased!) introduction to algorithmic fairness

Glimpse at two contributions in online learning

Disclaimer: I do not consider myself as an expert of this topic
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life, and it is used for sensitive
decisions such as

admission in university,

bank loan,

job recruitment,

justice decision,

medical diagnosis,

...

Christophe Giraud (Orsay) Fairness in Learning IHP 4 / 69



Promises of ML in decision-making

ML can improve decision-making

ML can be more accurate, more objective and more fair than humans,
since algorithms can

incorporate more data, and more factors in a complex analysis,

and are not subject to personal biases, tiredness, emotional factors,
etc
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Promises for a better world
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Actuality of ML decision-making

Discriminations also happen in ML prediction

Many ML systems have been shown to produce unfair outcomes.

Some famous past examples:

Hiring AI from Amazon was discriminating against female candidate
on some jobs

Google Ad was proposing higher-paying executive jobs more likely to
men than women

COMPAS was falsely predicting recidivism twice more likely for
African-American than for Caucasian-American.
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COMPAS recidivism algorithm in action
Source: ProPublica
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Where does the unfairness come from?

Main potential causes of unfairness in data science

[intentional discrimination]

historical biases in learning datasets

inadvertent bias in evaluations (biased proxy)

inadvertent bias from data sampling: learning dataset not
representative of the target population

inadvertent bias from algorithm objectives: focus on the
benefit for majority group
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Fairness in Machine Learning: a major societal concern

Societal concern

Standard use of ML can lead to unfair and discriminating decisions,

Machine Learning is ubiquitous in many sensitive decisions: bank
loan, admission to university, job recruitment, crime recidivism
prediction, etc

Fairness in decision-making is an important topic;

The statistical community has an important role to play for providing
I conceptual ideas
I competitive algorithms with provable performances
I theoretical insights
I education of the next generation of data scientists

In collaboration with experts from human science and policy makers.
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EU regulation for AI

Regulation on AI now include some fairness requirement
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EU regulation for AI

Regulation on AI now include some fairness requirement

−→ Jean-Michel Loubes’ talk
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French anti-discrimination law (LOI no 2008-496)

Direct discrimination

Constitue une discrimination directe la situation dans laquelle, sur le
fondement de son origine, de son sexe, de sa situation de famille, [...] une
prétendue race ou une religion déterminée, une personne est traitée de
manière moins favorable qu’une autre ne l’est, ne l’a été ou ne l’aura été
dans une situation comparable.

Indirect discrimination

Constitue une discrimination indirecte une disposition, un critère ou une
pratique neutre en apparence, mais susceptible d’entrainer, pour l’un des
motifs mentionnés au premier alinéa, un désavantage particulier pour des
personnes par rapport à d’autres personnes, à moins que cette disposition,
ce critère ou cette pratique ne soit objectivement justifiée par un but
légitime [...]
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1- A (small) tour in algorithmic fairness
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Algorithmic fairness

3 main statistical points of view for improving fairness

1 Individual fairness aims to treat similar people similarly (individual
notions);

2 Group fairness seeks to comply to fairness criteria at the
sub-population level (statistical notions);

3 Causal fairness tries to identify causes of unfairness in order to act
on them (causal notions).
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Learning framework

Notation

Outcome Y ∈ Y
Covariate X ∈ X
Sensitive attribute S ∈ S (observed or not)

Predictor: f : X × S → Y (possibly f : X → Y)

Prediction: F = f (X , S)
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Individual fairness
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Individual fairness: Lipschitz mapping

Lipschitz mapping: treating similar people similarly

For f a randomized predictor and two distances d on X and D on the
probability distribution on Y

D(law(f (x)), law(f (x ′))) ≤ d(x , x ′).

This definition encodes the notion treating similar people similarly.

Caveat: the design of the distance d is critical and can lead to unfair
decisions.

Ex: a job may require self-confidence and hard-concentration skills. Your
hiring system may be Lipschitz, but strongly favor self-confidence
compared to hard-concentration skills, leading to discrimination.
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Group fairness
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Group fairness

General principle

To comply to some fairness criteria at the sub-population level (statistical
notions)

Ex: we want to treat equally women and men.

Caveat: group fairness focuses at the group level, so (alone) it does not
enforce fairness at the individual level
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Group fairness: no Disparate Treatment

no Disparate Treatment

The predictor f complies to no disparate treatment, if it does not use the
sensitive attribute S

f : X → Y

It protects against pure intentional discrimination (negative or positive!)

Caveats:

1 when X and S are correlated, it does not protect against unfairness or
discrimination

2 difficult to protect against indirect discrimination when S is ignored
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Group fairness: meritocratic fairness

Equalized Odds

F ⊥⊥ S | Y

Ex: (binary classification)

P [F = 1|S = 1,Y ] ∼= P [F = 1|S = 0,Y ]

Equalized Odds encodes a notion related to meritocracy

There are many variants

Caveat: strongly subject to biases in learning datasets
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Group fairness: Demographic parity

Demographic parity

F ⊥⊥ S

Ex: (binary classification)

P [F = 1|S = 1] ∼= P [F = 1|S = 0]

Demographic parity promotes diversity and can be related to affirmative
action policies.

Caveat: the outcome is not taken into account
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A quick remark: fairness is only part of the game

Demographic Parity (DP) alone is meaningless: it is very simple to
comply to DP, just provide a prediction F at random, independent of
(X ,S). /

=⇒ DP must be coupled with risk minimisation

Ex: (binary classification) an ideal classifier should be

F ∗DP ∈ argmin
F :P[F=1|S=1]=P[F=1|S=0]

P [F 6= Y ]
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Remark (continued)

Ex: Assume you want to hire 3% of the students studying maths.
You want to hire the best ones, while complying to DP in terms of gender.

Then, you will hire the top 3% female students and the top 3% male
students.

=⇒ Risk requirement enforces some individual fairness: we observe that
your recruitment is not only fair between groups (in terms of DP), but also
within a group (as far it is homogeneous), since the best students of each
group are hired.

Remark: it sounds like DP+risk minimisation may have something to do
with quantile adjustment...

−→ Christophe Denis’ talk
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Demographic Parity (DP) and no Disparate Treatment
(nDT)

Limitation to previous example: Disparate Treatment is prohibited by
many regulations.

Demographic Parity (DP) with no Disparate Treatment (nDT)?

It is possible to enforce DP together with nDT, by using (more or less
implicitly) proxies for estimating S .

Hence DP can be enforced even when DT is prohibited.

Is it desirable to combine DP with nDT?
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Undesirable side effects on a toy example of hiring data

source: Z.C. Lipton, A. Chouldechova, J. McAuley, NeurIPS 2018

An unconstrained classifier (vertical line) hires candidates based on work
experience, yielding higher hiring rates for men than for women.

A nDT classifier (dashed diagonal) achieves DP by differentiating based on
an irrelevant attribute (hair length).

The nDT hurts some short-haired women, flipping their decisions to reject, and
helps some long-haired men. /
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Current regulation can hurt fairness

−→ nDT can be detrimental when trying to enforce some group-fairness
properties like DP: re-ordering within groups can occur /

Yet, Disparate Treatment is prohibited by many regulations preventing
from a safe application of DP (or other criteria)
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Group fairness: Equal Opportunity

Equal Opportunity

Denote by Y+ the set of positive outcomes

F ⊥⊥ S | Y ∈ Y+

Ex: (binary classification) with Y+ = {1}

P [F = 1|S = 1,Y = 1] ∼= P [F = 1|S = 0,Y = 1]

Equal Opportunity requires equal True Positive rates across groups:
successful people should be given the same chance in all groups.
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Group fairness: Predictive parity

Predictive parity (test fairness)

Y ∈ Y+ ⊥⊥ S | F ∈ Y+

Ex: (binary classification) with Y+ = {1}

P [Y = 1|S = 1,F = 1] ∼= P [Y = 1|S = 0,F = 1]

Predictive parity asks for equal fraction of correct positive prediction
across groups.

Somewhat related to group-wise calibration (below)

This criterion can be evaluated, even in partial monitoring scheme where
we observe the outcome Y only when F = 1.
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Performance fairness: Group-wise calibration

Group-wise calibration

E [Y |S ,F ] ∼= F

Ex: (binary classification) for a score F ∈ [0, 1]

P [Y = 1|S = 1,F ] ∼= P [Y = 1|S = 0,F ] ∼= F

The prediction are calibrated for each group.
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Performance fairness: Equal group-wise risk

Equal group-wise risk

For a loss function `

E [`(Y ,F )|S ] ∼= E [`(Y ,F )]

Equal risk for each group.
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Performance fairness: Group-wise no regret

Group-wise no regret

max
s∈S

{
E [`(Y ,F )|S = s]−min

fs
E [`(Y , fs(X ))|S = s]

}
= o(1)

Each group enjoys a no regret prediction.
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And many other criteria...

A large zoology

Demographic parity F ⊥⊥ S

Equalized odds F ⊥⊥ S |Y
Equal opportunity F ⊥⊥ S |Y ∈ Y+

Predictive parity Y ∈ Y+ ⊥⊥ S | F ∈ Y+

Group-wise calibration E [Y |S ,F ] ∼= F

Equal group-wise risk E [`(Y ,F )|S ] ∼= E [`(Y ,F )]

. . . . . .

with some incompatible notions!
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The famous COMPAS case

The Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) is a software which aims to predict recidivism risk.

ProPublica compared COMPAS predictions across ethinicity groups in the
USA. It exhibits a large violation of the Equalized Odds criteria.

The COMPAS developers argue yet that COMPAS (almost) complies to
Predictive parity.

Chouldechova (2017) and Kleinberg et al. (2017) show that it is
impossible to comply simultaneously to Equalized Odds and Predictive
parity, unless Y ⊥⊥ S .
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Finding a balance between different notions

Relaxing fairness criteria

Fairness criteria are imperfect mathematical transposition of
qualitative ideas;

Evaluations of fairness criteria are subjected to uncertainties;

Some fairness criteria are incompatible;

so, it is wise to

introduce some quantitive measures of violation of the fairness
criteria;

seek for a good trade-off between different fairness criteria and regret
(Pareto frontier).
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Learning with fairness constraints

Typical approach:

1 Introduce some quantitative fairness constraints C1(F ),C2(F ), . . .

Ex: C1(F ) =
∣∣P [F = 1|S = 1]− P [F = 1|S = 0]

∣∣
2 Minimize the risk R(F ) under these contraints

F ∗ ∈ argmin
F∈F :C1(F )≤δ1,...,CK (F )≤δK

R(F )

As usual, the risk R(F ), but also the constraints Ck(F ) cannot be directly
computed
−→ two main approaches: In-Processing and Post-Processing
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Learning with fairness constraints: In-Processing

In-Processing

A typical In-Processing approach is to

1 Take empirical versions R̂(F ) and Ĉk(F ) of the risk and of the
constraints
(R̂(F ) may include some regularisation terms)

2 Minimise the empirical version of the initial problem

F̂ ∈ argmin
F∈F : Ĉ1(F )≤δ1,...,ĈK (F )≤δK

R̂(F )

−→ some examples in online learning below
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Learning with fairness constraints: Post-Processing

Post-Processing
1 Express the optimal fair predictor

F ∗ ∈ argmin
F∈F :C1(F )≤δ1,...,CK (F )≤δK

R(F )

in terms of the risk-optimal predictor F † ∈ argminF∈F R(F ):

−→ very often, F ∗ can be obtained via a (quite) simple
transformation F ∗ = T (F †)

2 Compute a predictor F̂ † with a small risk R(F̂ †) with classical technics

3 Plug-in: compute the estimator by applying the transformation of the

first step F̂ = T (F̂ †)

−→ Christophe Denis’ talk
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Another approach: Pre-Processing

Pre-Processing: learning fair features

The rationale is

1 to find a mapping φ such that

φ(X , S) ⊥⊥ S

2 to apply classical ML algorithms with features φ(X ,S) instead of X

Example: learning from data the mapping

φ ∈ argmin
φ(X ,S)⊥⊥S

E [d(X , φ(X ,S))]
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Causal fairness
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Causal fairness: identifying causes of unfairness

Causal fairness aims to identify sources of unfairness.

Causal fairness

Typical approach

The relations between attributes (X , S) and their influence on
outcome Y is modeled by structural equations

These structural equations capture the influence of sensitive attributes

The objective is to remove all discriminatory influences

Pros: causal fairness is an individual fairness notion ,

Caveat: the notions of causal fairness heavily rely on the causal model.
The accuracy of this model is critical. /

−→ alternative notions based on optimal transport in Jean-Michel Loubes
and Fanny Jourdan’s talks ,
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Causal fairness: Counterfactual fairness

Counterfactual fairness

A predictor F is fair if, for any individual (x , s), the distribution of F is
unchanged, had the same individual been of type s ′.

More formally,

P [FS←s(U) = y |X = x ,S = s] = P [FS←s′(U) = y |X = x ,S = s] ,

where the distribution of FS←s′(U) = y given (X = x ,S = s) is obtained
by computing F with the intervention do(S = s ′) and with the latent
variables U distributed according to the conditional distribution of U given
(X = x ,S = s).

An example of counterfactually fair predictor is when, in the causal graph,
it does not depend on a descendant of the sensitive attribute.

Christophe Giraud (Orsay) Fairness in Learning IHP 42 / 69



Causal fairness: Counterfactual fairness

Counterfactual fairness

A predictor F is fair if, for any individual (x , s), the distribution of F is
unchanged, had the same individual been of type s ′.

More formally,

P [FS←s(U) = y |X = x ,S = s] = P [FS←s′(U) = y |X = x ,S = s] ,

where the distribution of FS←s′(U) = y given (X = x ,S = s) is obtained
by computing F with the intervention do(S = s ′) and with the latent
variables U distributed according to the conditional distribution of U given
(X = x ,S = s).

An example of counterfactually fair predictor is when, in the causal graph,
it does not depend on a descendant of the sensitive attribute.

Christophe Giraud (Orsay) Fairness in Learning IHP 42 / 69



Causal fairness: No unresolved discrimination

Resolving attribute

A resolving attribute is an attribute that is influenced by the sensitive
attribute in a non-discriminatory manner.

Ex: body strength for hiring piano movers

No unresolved discrimination

A prediction has no unresolved discrimination if there exists no path from
the sensitive attribute to the prediction, except via a resolving variable.
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Summary

Three main statistical notions of algorithmic fairness

1 Individual fairness aims to treat similar people similarly (individual
notions);

2 Group fairness seeks to comply to fairness criteria at the
sub-population level (statistical notions);

3 Causal fairness tries to identify causes of unfairness in order to act
on them (causal notions).

Three main algorithmic approaches

Pre-processing: aim to remove biases from data

In-processing: produce prediction by minimizing empirical risk under
empirical fairness constraints

Post-processing: take predictions from standard predictors as input,
and adjust them to comply to fairness requirements
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2- Improving fairness in online learning?
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Collaborators and references

A unified approach to fair online learning via Blackwell approachability

E. Chzhen, C. Giraud, G. Stoltz; NeurIPS 2021 (spotlight).

Small Total-Cost Constraints in CBwK, with Application to Fairness

E. Chzhen, C. Giraud, Z. Li, G. Stoltz; NeurIPS 2023

Parameter-free projected gradient descent

E. Chzhen, C. Giraud, G. Stoltz; arXiv:2305.19605
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Collaborators and references

The price of unfairness in linear bandits with biased feedback

S. Gaucher, A. Carpentier, C. Giraud; NeurIPS 2022.
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Contextual online setting

Covariate and sensitive attribute

Each request is characterized by a covariate x ∈ X (observed) and a
sensitive attribute s ∈ {−1,+1} (observed or not).

Informal description of a typical setting

A each epoch t = 1, 2, . . .

The Learner observes a context (xt , st) or xt only

The Learner performs an action (or prediction) at

The Learner observes a feedback yt and suffers a regret rt (stochastic
or adversarial)

Goal of the learner

To minimize the cumulative regret
∑

t rt , while complying to some fairness
criteria (and possibly some other constraints).
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Instantiating fairness constraints in online learning

Fairness cost

Fairness criteria can be encoded as vector valued cost constraints.

Example: demographic parity

The empirical demographic parity criteria (for at ∈ {0, 1})∣∣∣∣∣∣ 1

p1T

∑
t≤T ;st=1

at −
1

p−1T

∑
t≤T ;st=−1

at

∣∣∣∣∣∣ = Õ(T−1/2)

can be encoded as∑
t≤T

ct = Õ(
√
T ) with ct :=

[
atst/pst
−atst/pst

]
.
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Our contributions

Informal objective

min∑
t≤T ct≤Õ(

√
T )

∑
t≤T

rt .

Two points of view

1 In adversarial setting:
I the fair learning problem can be formulated as a contextual

approachability problem,
I Blackwell theory can be adapted to handle this setting.

2 In stochastic bandit setting:
I the fairness objective falls into the Contextual Bandit with Knapsack

(CBwK) framework,
I the theory for CBwK must be improved to handle Õ(

√
T ) constraints

(and signed cost).
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Adversarial Setting :

a Contextual Blackwell Approachability Perspective

A unified approach to fair online learning via Blackwell approachability.

E. Chzhen, C. Giraud, G. Stoltz; NeurIPS 2021 (spotlight).
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Online learning setting: formal description
We model our fair online learning problem as a contextual learning game
between the Learner and Nature.

Stochastic attributes (context)

At each time t, the attributes (xt , st) are sampled according to Q,
independently from the past.

Nature (un)awareness

Let G denotes Nature (un)awareness mapping

Nature awareness G (x , s) = (x , s),

Nature unawareness: G (x , s) = x .

Nature is an adverse player

At each time t, Nature observes G (xt , st) and outputs an adversarial
feedback yt .
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Fair online learning as a contextual approachability problem

Encoding the objectives of the learner

We can encode the learning objectives (vanishing-regret, demographic
parity, etc) via

a vector-valued payoff function m(at , yt , xt , st)

and a target set C.

The learning objective is to comply to
1

T

T∑
t=1

m(at , yt , xt , st) −→ C.

Examples of targets (to be combined)

Criterion Vector payoff function m Closed convex target set C

Demographic parity mDP(a, s) =
( a
p−1

1s=−1,
a
p1

1s=1
)

CDP =
{

(u, v) ∈ R2 : |u − v| ≤ δ
}

No-regret mreg(a, y, x, s) =
(
f (a, y, x, s)−f (a′, y, x, s)

)
a′∈A Creg = [0,+∞)N

Group-calibration mgr-cal(a, y, s) =
(

(a′ − y) 1s=s′/γs′
)
a′∈A, s′∈S Cgr-cal =

{
v ∈ RN|S| : ‖v‖1 ≤ ε

}
Equalized payoffs meq-pay(a, y, x, s) =

(
f (a,y,x,s′)
γs′

1s=s′
)
s′∈S

Ceq-pay =
{

(u, v) ∈ R2 : |u−v|≤ε
}
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Online learning setting

Learning setting

For t = 1, 2, . . .
1 Simultaneously,

I the Learner chooses (px
t )x∈X based on (mτ , xτ , sτ )τ≤t−1

I Nature chooses
(

q
G(x,s)
t

)
(x,s)∈X×S

based on (aτ , yτ , xτ , sτ )τ≤t−1

2 (xt , st) are sampled according to Q, independently from the past
3 Simultaneously

I the Learner observes xt , and picks an action at ∈ A according to pxt
t

I Nature observes G (xt , st), and picks yt ∈ Y according to q
G(xt ,st)
t

4 The Learner observes the payoff mt = m(at , yt , xt , st) and (xt , st),
while Nature observes (at , yt , xt , st).

Aim: The Learner wants to ensure that m̄T :=
1

T

T∑
t=1

mt → C a.s. for

some target set C.
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Assumption: fast enough sequential estimation of Q

The Player can build estimators (Q̂t)t≥1 of the unknown distribution Q such that

E
[
TV2(Q̂t ,Q)

]
≤ c

(
log(t)

)−3 ∀t ≥ 2 (1)

Theorem : Contextual Blackwell approachability

If C ⊂ Rd is closed convex, m is bounded, and (1) is satisfied, then

∃(px
t )x∈X ,t≥1 such that ∀(q

G(x,s)
t )(x,s)∈X×{0,1},t≥1 we have m̄T

a.s.→ C
if and only if ∀(qG(x,s))(x,s)∈X×{0,1} ∃(px)x∈X such that

m(p,q,Q) :=

∫
X×S

m
(
px ,qG(x,s), x , s

)
dQ(x , s) ∈ C

Contextual Blackwell strategy

Set m(p,q, Q̂t) :=
∫

m
(
px ,qG(x,s), x , s

)
dQ̂t(x , s). At stage t + 1, choose

(px
t+1)x∈X ∈ argmin

(px )x

max
(qG(x,s))x,s

〈m̄t − ΠCm̄t ,m(p,q, Q̂t)〉
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Caveats

Caveat 1: the target set C has to be known

The results can be extended (at the price of some technicalities) to the
case where we only have a consistent super-estimate Ĉt of C.

Caveat 2: computational cost of projection

Computing the projection ΠC can be computationally expensive.

Caveat 3: pessimistic Pareto frontier and slow rates

The adversarial setting leads to pessimistic Pareto frontier (trade-off)
between the different criteria;

The rates are governed by the estimation rate TV(Q̂t ,Q), which is
typically slow outside the finite case.
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Stochastic setting:

A Contextual Bandit with Knapsack perspective

Small Total-Cost Constraints in CBwK, with Application to Fairness

E. Chzhen, C. Giraud, Z. Li, G. Stoltz; NeurIPS 2023
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Stochastic setting

Learning problem

The learner observes x̃t = (xt , st)
i.i.d.∼ Q

The learner chooses a policy πt : X̃ → P(A), and picks an action
at ∼ πt(x̃t),

The learner receives a feedback yt and a fairness cost ct such that

E[yt |Ft ] = f (x̃t , at) and E[ct |Ft ] = c(x̃t , at).

The learner suffers a regret rt = OPT− yt (described below).

Example: Demographic Parity

c(x̃t , at) =

[
atst/pst
−atst/pst

]
.
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Optimal policy and regret

Optimal static policy and regret

The optimal static feedback is

OPT(Q, f , c) := max
π : EQ[

∑
a∈A c(X̃ ,a)πa(X̃ )]≤δT

EQ

[∑
a∈A

f (X̃ , a)πa(X̃ )

]

and the regret is
rt = OPT(Q, f , c)− yt .

Learning Objective

Minimize the cumulative regret
∑
t≤T

rt while complying to the fairness

constraint
1

T

∑
t≤T

ct ≤ δT (w.h.p.).
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Fairness as CBwK

CBwK problem

1 we recognize a Contextual Bandit with Knapsack (CBwK) problem

2 but state of the art theory can only handle δT = T−1/4 (or X finite),
which is too large for fairness constraints, where we typically wish to
have δT = Õ(T−1/2)
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Learning assumption

Assumption: UCB and LCB

We can built UCB and LCB such that with probability ≥ 1− δ

f̂ UCB
t (., .) ≈ f (., .) + Õδ(1/

√
t)

ĉLCB
t (., .) ≈ c(., .) + Õδ(1/

√
t)

Examples

Linear or logistic model : when

f (x , a) = η(ϕ(x , a)T θa) and c(x , a) = η(ψ(x , a)Tβa),

with η(u) = u or η(u) = eu/(1 + eu), we can use variant of LinUCB or
LogisticUCB1.
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A first idea

Idea1: playing empirical optimal static policy

Choose at according to a policy π̂t maximizing OPT(Q̂t , f̂
UCB
t , ĉLCB

t ).

Issues
1 The analysis of

OPT(Q, f , c)− OPT(Q̂t , f̂
UCB
t , ĉLCB

t )

produces some TV(Q̂t ,Q) terms, leading to slow rates / large fairness
violation.

2 Solving OPT(Q̂t , f̂
UCB
t , ĉLCB

t ) is computationally expensive
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Lagrangian version

Lagrangian formulation

OPT(Q, f , c) = max
π : EQ[

∑
a∈A c(X̃ ,a)πa(X̃ ))]≤δT

EQ

[∑
a∈A

f (X̃ , a)πa(X̃ )

]

= max
π

min
λ≥0

EQ

[∑
a∈A

πa(X̃ )
(
f (X̃ , a)− 〈λ, c(X̃ , a)− δT 〉

)]

strong duality → = min
λ≥0

max
π

EQ

[∑
a∈A

πa(X̃ )
(
f (X̃ , a)− 〈λ, c(X̃ , a)− δT 〉

)]

= min
λ≥0

EQ

[
max
a∈A

{
f (X̃ , a)− 〈λ, c(X̃ , a)− δT 〉

}]
Two immediate benefits

1 for a fixed λ the problem is separable, and Q can be forgotten;

2 we only need to learn the optimal λ∗ ∈ Rd =⇒ parametric rates. ,
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High-level algorithm: Primal-dual descent-ascent

Iterate

full optimisation on primal variable: pick

at ∈ argmax
a∈A

{
f̂t(x̃t , a)− 〈λt−1, ĉt(x̃t , a)− δT 〉

}
projected subgradient step on dual variable: update

λt = (λt−1 + γ (ĉt(x̃t , at)− δT ))+

Issues

1 Benign issue: we must replace δT by δ′T = δT − Õ(1/
√
T ) to

prevent from violation of the fairness criteria due to random
fluctuations

2 Major issue: to satisfy the constraints, we need to set γ ≈ ‖λ∗‖/
√
T

/
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Choice of step size γ

Bounds (informal)

For a fixed step size γ > 0, we have w.h.p.

‖constraint violation‖ = Õ
(√

T + 1∨‖λ∗‖
γ

)
Regret = Õ

(
γT + ‖λ∗‖

√
T
)

.

So best γ is γ∗ = (1 ∨ ‖λ∗‖)/
√
T :

‖constraint violation‖ = Õ
(√

T
)

Regret = Õ
(

(1 ∨ ‖λ∗‖)
√
T
)

.

Mispecified γ

If we simply set γ = 1/
√
T , then we have

‖constraint violation‖ = Õ
(

(1 ∨ ‖λ∗‖)
√
T
)

/
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Tuning γ

Good old doubling trick

Start from γ = 1/
√
T

Tracking the constraint violation at each epoch t, we can detect from
the bound

‖constraint violation‖ = Õ

(√
t +

1 ∨ ‖λ∗‖
γ

)
if our current choice of γ is too small

If so, double γ.
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Adaptive algorithm

Adaptive version

Iterate: for t ≥ 1

Pick at ∈ argmaxa∈A

{
f̂t(x̃t , a)− 〈λt−1, ĉt(x̃t , a)− δ′T 〉

}
Update λt =

(
λt−1 + 2k√

T
(ĉt(x̃t , at)− δ′T )

)
+

Until

∥∥∥∥∥∥
 t∑
τ=Tk

cτ − (t − Tk + 1)δ′T


+

∥∥∥∥∥∥ > Õ(
√
T )

Then: increase k by one, set Tk = t + 1, and iterate again.
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Theory

Regret bound

For δT ≥ Õ(T−1/2), the above algorithm fulfills with probability at least
1− δ ∑

t≤T
rt ≤ Õδ

(
(1 ∨ ‖λ∗‖)

√
T
) 1

T

∑
t≤T

ct ≤ δT .

Suitable for fairness constraints ,

Optimality?

A proof scheme suggests that this regret is optimal.
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Concluding remark

An important fairness issue in decision making, not addressed in this
presentation, is the problem of misalignment between evaluations and
objectives.

This question does not fall into the framework described in this
presentation, but it is an important question in order to improve overall
fairness in decision making.
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