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Content of the talk

Objectives
@ to highlight fairness issues in data science
@ to overview some statistical approaches

@ to provide examples of statistical contributions

Plan of the talk

o A (biased!) introduction to algorithmic fairness

@ Glimpse at two contributions in online learning

Disclaimer: | do not consider myself as an expert of this topic
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life
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Fairness in Machine Learning: a major societal concern
Machine Learning is ubiquitous in daily life
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life

Emotion Analysis

* LATEST Al/ML EMOTION RECOGNITION

TECHNOLOGY FOR VIDEO

Get more data from recorded interviews
Reduce personal bias

Make data-driven hiring decisions
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Speed up recruiting process

Christophe Giraud (Orsay)

CONFUSED

50%

ANGRY

20%

DISGUSTED

15%

Source easyhire.me

Fairness in Learning IHP 3 /69



Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life

05-17-19

Schools are using software to help
pick who gets in. What could go
wrong?

Admissions officers are increasingly turning to automation and Al with the hope of
streamlining the application process and leveling the playing field.
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life

SCIENCE ADVANCES | RESEARCH ARTICLE

RESEARCH METHODS Copyright © 2018

The Authors, some

The accuracy, fairness, and limits fahs s

of predicting recidivism Amercan Associaton
for the Advancement

Julia Dressel and Hany Farid* of Science. No claim to

original US. Government
Works. Distributed

Algorithms for predicting recidivism are commonly used to assess a criminal d dant’s likelihood of ¢ itting a under a Creative

crime. These predictions are used in pretrial, parole, and sentencing decisions. Proponents of these systems argue that Commons Attribution
big data and advanced machine learning make these analyses more accurate and less biased than humans. We show, NonCommercial

ialrisk assessment software[COMPAS is no more accurate or fair than predic-]  ticense 40 (cc YO,
inal justice expertise. [In addition, despite COMPAS's collection of 137
features, the same accuracy can be achieved with a simple linear predictor with only two features.
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Fairness in Machine Learning: a major societal concern

Machine Learning is ubiquitous in daily life, and it is used for sensitive
decisions such as

@ admission in university,
@ bank loan,

@ job recruitment,

@ justice decision,

@ medical diagnosis,
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Promises of ML in decision-making

ML can improve decision-making

ML can be more accurate, more objective and more fair than humans,
since algorithms can

@ incorporate more data, and more factors in a complex analysis,

@ and are not subject to personal biases, tiredness, emotional factors,

etc
y
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Promises for a better world

5 Benefits of
Recruiting Automation

(~%
°

team communication

Boosts recruiter Improves candidate
efficiency experiences
Fast-forwards Nurtures Candidate
candidate screening Engagement
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Actuality of ML decision-making

Discriminations also happen in ML prediction
Many ML systems have been shown to produce unfair outcomes. J

Some famous past examples:
@ Hiring Al from Amazon was discriminating against female candidate
on some jobs
@ Google Ad was proposing higher-paying executive jobs more likely to
men than women

o COMPAS was falsely predicting recidivism twice more likely for
African-American than for Caucasian-American.
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COMPAS recidivism algorithm in action

Source:

VERNON PRATER

Prior Offenses

2 armed robberies, 1
attempted armed
robbery

Subsequent Offenses
1grand theft

LOW RISK

ProPublica

BRISHA BORDEN
Prior Offenses
4 juvenile

misdemeanors

Subsequent Offenses
None

HIGH RISK

01210 AuGETT
LOW RISK

BERNARD, PARKER
HIGHRISK 10

BUAWES RIvELLI
LOW RISK

JAMES RIVELLI

Prior Offenses

1 domestic violence
aggravated assault, 1
grand theft, 1 petty
theft, 1 drug trafficking

Subsequent Offenses
1grand theft

LOW RISK
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Where does the unfairness come from?

Main potential causes of unfairness in data science
@ [intentional discrimination]

@ historical biases in learning datasets

@ inadvertent bias in evaluations (biased proxy)

@ inadvertent bias from data sampling: learning dataset not
representative of the target population

@ inadvertent bias from algorithm objectives: focus on the
benefit for majority group
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Fairness in Machine Learning: a major societal concern

Societal concern
@ Standard use of ML can lead to unfair and discriminating decisions,
@ Machine Learning is ubiquitous in many sensitive decisions: bank
loan, admission to university, job recruitment, crime recidivism
prediction, etc

@ Fairness in decision-making is an important topic;

@ The statistical community has an important role to play for providing

» conceptual ideas

» competitive algorithms with provable performances

> theoretical insights

» education of the next generation of data scientists

@ In collaboration with experts from human science and policy makers.

Christophe Giraud (Orsay) Fairness in Learning IHP 10 / 69



EU regulation for Al

Regulation on Al now include some fairness requirement

*ak EUROPEAN COMMISSION
Brussels, 21.4.2021

COM(2021) 206 final
2021/0106(COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL
INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS
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EU regulation for Al

Regulation on Al now include some fairness requirement
PROHIBITED ARTIFICIAL INTELLIGENCE PRACTICES

Article 5
1. The following artificial intelligence practices shall be prohibited:

(a) the placing on the market, putting into service or use of an Al system that deploys subliminal techniques
beyond a person’s consciousness in order to materially distort a person’s behaviour in a manner that
causes or is likely to cause that person or another person physical or psychological harm;

(b) the placing on the market, putting into service or use of an [AI system that exploits lany of the
vulnerabilities of a specific group of persons due to their age, physical or mental disability, in order to
materially distort the behaviour of a person pertaining to that group in a manner that causes or is likely
to cause that person or another person physical or psychological harm;

(c) the placing on the market, putting into service or use of Al systems by public authorities or on their
behalf for the evaluation or classification of the trustworthiness of natural persons over a certain period
of time based on their social behaviour or known or predicted personal or personality characteristics]
with the social score leading to either or both of the following:

(i) |detrimental or unfavourable treatment of certain natural persons or whole groups thereof fin social
contexts which are unrelated to the contexts in which the data was originally generated|or
collected;

(i) detrimental or unfavourable treatment of certain natural persons or whole groups thereof that is
unjustified or disproportionate|to their social behaviour or its gravity;
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EU regulation for Al

Regulation on Al now include some fairness requirement

—— Jean-Michel Loubes’ talk
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French anti-discrimination law (LOI no 2008-496)

Direct discrimination

Constitue une discrimination directe la situation dans laquelle, sur le
fondement de son origine, de son sexe, de sa situation de famille, [...] une
prétendue race ou une religion déterminée, une personne est traitée de
maniere moins favorable qu'une autre ne I'est, ne I'a été ou ne I'aura été
dans une situation comparable.

Indirect discrimination

Constitue une discrimination indirecte une disposition, un critére ou une
pratique neutre en apparence, mais susceptible d'entrainer, pour I'un des
motifs mentionnés au premier alinéa, un désavantage particulier pour des
personnes par rapport a d'autres personnes, a moins que cette disposition,
ce critére ou cette pratique ne soit objectivement justifiée par un but
légitime [...]
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1- A (small) tour in algorithmic fairness
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Algorithmic fairness

3 main statistical points of view for improving fairness
© Individual fairness aims to treat similar people similarly (individual

notions);

@ Group fairness seeks to comply to fairness criteria at the
sub-population level (statistical notions);

© Causal fairness tries to identify causes of unfairness in order to act
on them (causal notions).
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Learning framework

Notation
@ Outcome Y €Y
o Covariate X € X
@ Sensitive attribute S € S (observed or not)
@ Predictor: f: X xS — Y (possibly f: X — ))
@ Prediction: F = f(X,5)

Christophe Giraud (Orsay) Fairness in Learning
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Individual fairness

= & - = DA
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Individual fairness: Lipschitz mapping

Lipschitz mapping: treating similar people similarly
For f a randomized predictor and two distances d on X and D on the
probability distribution on Y

D(law(f(x)), law(f(x"))) < d(x,x").

This definition encodes the notion treating similar people similarly.

Caveat: the design of the distance d is critical and can lead to unfair
decisions.

Ex: a job may require self-confidence and hard-concentration skills. Your

hiring system may be Lipschitz, but strongly favor self-confidence
compared to hard-concentration skills, leading to discrimination.
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Group fairness
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Group fairness

General principle

To comply to some fairness criteria at the sub-population level (statistical
notions)

Ex: we want to treat equally women and men.

Caveat: group fairness focuses at the group level, so (alone) it does not
enforce fairness at the individual level
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Group fairness: no Disparate Treatment

no Disparate Treatment

The predictor f complies to no disparate treatment, if it does not use the
sensitive attribute S

f:X—=Y

It protects against pure intentional discrimination (negative or positive!)

Caveats:

@ when X and S are correlated, it does not protect against unfairness or
discrimination

@ difficult to protect against indirect discrimination when S is ignored

Christophe Giraud (Orsay)
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Group fairness: meritocratic fairness

Equalized Odds
FIUS|Y J

Ex: (binary classification)

PI[F=1S=1Y]=P[F=1/S=0,Y]

@ Equalized Odds encodes a notion related to meritocracy

@ There are many variants

Caveat: strongly subject to biases in learning datasets

Christophe Giraud (Orsay) Fairness in Learning IHP 21/ 69



Group fairness: Demographic parity

Demographic parity
s J

Ex: (binary classification)

P[F=1|S =1] = P[F =1|S = 0]

Demographic parity promotes diversity and can be related to affirmative
action policies.

Caveat: the outcome is not taken into account
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A quick remark: fairness is only part of the game

Demographic Parity (DP) alone is meaningless: it is very simple to
comply to DP, just provide a prediction F at random, independent of

(X,5). ®
= DP must be coupled with risk minimisation

Ex: (binary classification) an ideal classifier should be

Fhp € argmin P[F # Y]
F:P[F=1|S=1]=P[F=1|5=0]
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Remark (continued)

Ex: Assume you want to hire 3% of the students studying maths.
You want to hire the best ones, while complying to DP in terms of gender.

Then, you will hire the top 3% female students and the top 3% male
students.

= Risk requirement enforces some individual fairness: we observe that
your recruitment is not only fair between groups (in terms of DP), but also
within a group (as far it is homogeneous), since the best students of each
group are hired.

Remark: it sounds like DP+risk minimisation may have something to do
with quantile adjustment...
— Christophe Denis’ talk
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Demographic Parity (DP) and no Disparate Treatment
(nDT)

Limitation to previous example: Disparate Treatment is prohibited by
many regulations.

Demographic Parity (DP) with no Disparate Treatment (nDT)?

@ It is possible to enforce DP together with nDT, by using (more or less
implicitly) proxies for estimating S.

@ Hence DP can be enforced even when DT is prohibited.

Is it desirable to combine DP with nDT?

Christophe Giraud (Orsay)
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Undesirable side effects on a toy example of hiring data

- N N
& S ]

Hair length (cm)

"
S

5

0

0.0

25

5.0

7.5 100 125 150 175 200
Work experience (years)

=== Acc=0.96; p% rule=26% - Unconstrained
== Acc=0.74; p% rule=105% - DLP

A Woman advantaged by DLP

W Woman disadvantaged by DLP

A Man advantaged by DLP

¥ Man disadvantaged by DLP

source: Z.C. Lipton, A. Chouldechova, J. McAuley, NeurlPS 2018

@ An unconstrained classifier (vertical line) hires candidates based on work

experience, yielding higher hiring rates for men than for women.

@ A nDT classifier (dashed diagonal) achieves DP by differentiating based on

an irrelevant attribute (hair length).

The nDT hurts some short-haired women, flipping their decisions to reject, and

helps some long-haired men. &
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Current regulation can hurt fairness

— nDT can be detrimental when trying to enforce some group-fairness
properties like DP: re-ordering within groups can occur &

Yet, Disparate Treatment is prohibited by many regulations preventing
from a safe application of DP (or other criteria)
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Group fairness: Equal Opportunity

Equal Opportunity
Denote by ), the set of positive outcomes

FLS|Ye)s

Ex: (binary classification) with )}, = {1}

P[F=1S=1Y =1=P[F=1S=0,Y = 1]

Equal Opportunity requires equal True Positive rates across groups:
successful people should be given the same chance in all groups.
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Group fairness: Predictive parity

Predictive parity (test fairness)
Ye)y, 1L S ‘ Fe), J

Ex: (binary classification) with )}, = {1}

PlY=1S=1F=12P[Y=1S5S=0,F =1]

Predictive parity asks for equal fraction of correct positive prediction
across groups.

Somewhat related to group-wise calibration (below)

This criterion can be evaluated, even in partial monitoring scheme where
we observe the outcome Y only when F = 1.
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Performance fairness: Group-wise calibration

Group-wise calibration }

E[YI|S,FI=F

Ex: (binary classification) for a score F € [0, 1]

P[Y =1|S=1,F]2P[Y=1S=0F]~F

The prediction are calibrated for each group.
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Performance fairness: Equal group-wise risk

Equal group-wise risk

For a loss function ¢

E(Y,F)|S]=ZE[(Y,F)]

Equal risk for each group.

Christophe Giraud (Orsay)
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Performance fairness: Group-wise no regret

Group-wise no regret

ma {E[E(Y, F)IS =s] — mfsinIE[E(Y, (X))|S = s]} =o0(1)

Each group enjoys a no regret prediction.
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And many other criteria...

A large zoology

Demographic parity F1 S

Equalized odds F 1 S|Y
Equal opportunity F 1 S|lY ey,
Predictive parity YeYy LS| FeYy

Group-wise calibration | E[Y|S,F] = F
Equal group-wise risk | E[¢(Y, F)|S] = E[((Y, F)]

with some incompatible notions!
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The famous COMPAS case

The Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) is a software which aims to predict recidivism risk.

ProPublica compared COMPAS predictions across ethinicity groups in the
USA. It exhibits a large violation of the Equalized Odds criteria.

The COMPAS developers argue yet that COMPAS (almost) complies to
Predictive parity.

Chouldechova (2017) and Kleinberg et al. (2017) show that it is
impossible to comply simultaneously to Equalized Odds and Predictive
parity, unless Y 1L S.
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Finding a balance between different notions

Relaxing fairness criteria

@ Fairness criteria are imperfect mathematical transposition of
qualitative ideas;

@ Evaluations of fairness criteria are subjected to uncertainties;

@ Some fairness criteria are incompatible;

so, it is wise to

@ introduce some quantitive measures of violation of the fairness
criteria;

@ seek for a good trade-off between different fairness criteria and regret
(Pareto frontier).
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Learning with fairness constraints

Typical approach:

@ Introduce some quantitative fairness constraints Ci(F), G(F), ...
Ex: G(F)=|P[F=1S=1]-P[F=1]|S=0]|
@ Minimize the risk R(F) under these contraints

F* e argmin R(F)
FeF: G (F)<H1,...,Ck(F)<dk

As usual, the risk R(F), but also the constraints Cx(F) cannot be directly
computed
—> two main approaches: In-Processing and Post-Processing
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Learning with fairness constraints: In-Processing

In-Processing
A typical In-Processing approach is to
© Take empirical versions I/?\(F) and @(F) of the risk and of the

constraints
(R(F) may include some regularisation terms)

@ Minimise the empirical version of the initial problem

Fe argmin ﬁ(F)
FeF: Ci(F)<b1,...,Cx(F)<6k

— some examples in online learning below
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Learning with fairness constraints: Post-Processing

Post-Processing
© Express the optimal fair predictor

F* e argmin R(F)
FEF : Ci(F)<b1,.... Ck(F)<bk
in terms of the risk-optimal predictor F' € argming. » R(F):

— very often, F* can be obtained via a (quite) simple
transformation F* = T (FT)

@ Compute a predictor F! with a small risk R(F') with classical technics

© Plug-in: compute the estimator by applying the transformation of the
first step F = T(F)

— Christophe Denis’ talk
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Another approach: Pre-Processing

Pre-Processing: learning fair features
The rationale is

@ to find a mapping ¢ such that
o(X,S) LS

@ to apply classical ML algorithms with features ¢(X, S) instead of X

v

Example: learning from data the mapping

¢ € argmin E[d(X,¢(X,S))]
#(X.S)1LS
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Causal fairness
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Causal fairness: identifying causes of unfairness

Causal fairness aims to identify sources of unfairness.

Causal fairness
Typical approach

@ The relations between attributes (X, S) and their influence on
outcome Y is modeled by structural equations

@ These structural equations capture the influence of sensitive attributes

@ The objective is to remove all discriminatory influences

Pros: causal fairness is an individual fairness notion ©

Caveat: the notions of causal fairness heavily rely on the causal model.
The accuracy of this model is critical. ®

— alternative notions based on optimal transport in Jean-Michel Loubes
and Fanny Jourdan's talks ®
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Causal fairness: Counterfactual fairness

Counterfactual fairness

A predictor F is fair if, for any individual (x, s), the distribution of F is
unchanged, had the same individual been of type s'.

An example of counterfactually fair predictor is when, in the causal graph,
it does not depend on a descendant of the sensitive attribute.
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Causal fairness: Counterfactual fairness

Counterfactual fairness

A predictor F is fair if, for any individual (x, s), the distribution of F is
unchanged, had the same individual been of type s'.

More formally,
P[Fscs(U)=y|X =x,S=5] =P[Fs.s(U) =y|X =x,5=5],

where the distribution of Fs. ¢ (U) = y given (X = x,S = s) is obtained
by computing F with the intervention do(S = s’) and with the latent
variables U distributed according to the conditional distribution of U given
(X=x,5=5).

An example of counterfactually fair predictor is when, in the causal graph,
it does not depend on a descendant of the sensitive attribute.
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Causal fairness: No unresolved discrimination

Resolving attribute

A resolving attribute is an attribute that is influenced by the sensitive
attribute in a non-discriminatory manner.

Ex: body strength for hiring piano movers

No unresolved discrimination

A prediction has no unresolved discrimination if there exists no path from
the sensitive attribute to the prediction, except via a resolving variable.
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Summary

Three main statistical notions of algorithmic fairness
© Individual fairness aims to treat similar people similarly (individual
notions);
@ Group fairness seeks to comply to fairness criteria at the
sub-population level (statistical notions);

© Causal fairness tries to identify causes of unfairness in order to act
on them (causal notions).

Three main algorithmic approaches
@ Pre-processing: aim to remove biases from data
@ In-processing: produce prediction by minimizing empirical risk under
empirical fairness constraints

o Post-processing: take predictions from standard predictors as input,
and adjust them to comply to fairness requirements
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2- Improving fairness in online learning?
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Collaborators and references

A unified approach to fair online learning via Blackwell approachability
E. Chzhen, C. Giraud, G. Stoltz; NeurlPS 2021 (spotlight).

Small Total-Cost Constraints in CBwK, with Application to Fairness
E. Chzhen, C. Giraud, Z. Li, G. Stoltz; NeurlPS 2023

Parameter-free projected gradient descent
E. Chzhen, C. Giraud, G. Stoltz; arXiv:2305.19605
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Collaborators and references

The price of unfairness in linear bandits with biased feedback
S. Gaucher, A. Carpentier, C. Giraud; NeurlPS 2022. J
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Contextual online setting

Covariate and sensitive attribute

Each request is characterized by a covariate x € X’ (observed) and a
sensitive attribute s € {—1,+1} (observed or not).

Informal description of a typical setting

A each epoch t =1,2,...
@ The Learner observes a context (x, s¢) or x; only
@ The Learner performs an action (or prediction) a;

@ The Learner observes a feedback y; and suffers a regret r; (stochastic
or adversarial)

Goal of the learner

To minimize the cumulative regret  _, r:, while complying to some fairness
criteria (and possibly some other constraints).

v
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Instantiating fairness constraints in online learning

Fairness cost

Fairness criteria can be encoded as vector valued cost constraints.

Example: demographic parity
The empirical demographic parity criteria (for a; € {0,1})

1

1 2 —1/2
R TR N
pLT t<Tis=1 p—1T t<Tis=—1

can be encoded as

S q=0(T) with _[ afsf/”Sf].

—ass
=T t t/pst
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Our contributions

Informal objective

min E re.

ZthCtSG(ﬁ) t<T

Two points of view

O In adversarial setting:
the fair learning problem can be formulated as a contextual
approachability problem,
Blackwell theory can be adapted to handle this setting.

@ In stochastic bandit setting:

the fairness objective falls into the Contextual Bandit with Knapsack
(CBwK) framework,

the theory for CBwK must be improved to handle O(v/T) constraints
(and signed cost).

Christophe Giraud (Orsay) Fairness in Learning IHP 50 / 69



Adversarial Setting :

a Contextual Blackwell Approachability Perspective

A unified approach to fair online learning via Blackwell approachability.
E. Chzhen, C. Giraud, G. Stoltz; NeurlPS 2021 (spotlight).
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Online learning setting: formal description

We model our fair online learning problem as a contextual learning game
between the Learner and Nature.

Stochastic attributes (context)

At each time t, the attributes (x;, s;) are sampled according to Q,
independently from the past.

Nature (un)awareness
Let G denotes Nature (un)awareness mapping
o Nature awareness G(x,s) = (x, s),

o Nature unawareness: G(x,s) = x.

Nature is an adverse player

At each time t, Nature observes G(x, s¢) and outputs an adversarial
feedback y;.
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Fair online learning as a contextual approachability problem

Encoding the objectives of the learner

We can encode the learning objectives (vanishing-regret, demographic
parity, etc) via

@ a vector-valued payoff function m(as, yt, x¢, 5t)

@ and a target set C.

T

1
The learning objective is to comply to 7 Z m(ay, yt, X, St) — C.

t=1

Examples of targets (to be combined)

Criterion

Vector payoff function m

Closed convex target set C

Demographic parity
No-regret
Group-calibration

Equalized payoffs

mpp(a,5) = (527 ls=—1, o 1s=1)

mreg(a,y, x,5) = (f(a, v, x,8)=f(a", ¥, x,5)) r e 4

mgr-cal(av y:8) = ((a, —y) ls:s//,ysl)a’e.A, s'es

f(a,y,%,5")

meq—pay(‘?,}/axas) = ( ~_ lszsl)s’es

CDp:{(u,v)ERz: |lu—v| <6}

Creg = [0, +oo)V

Car-cal = {v € RMS!: |Ivl|; < &}

Ceq-pay = {(u,v) € R? : Ju—v|<e}

v
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Online learning setting

Learning setting
Fort=1,2 ...
o

@ (xt,s:) are sampled according to Q, independently from the past
© Simultaneously
the Learner observes x;, and picks an action a; € A
Nature observes G(xt, s;), and picks y; € Y
© The Learner observes the payoff my = m(ay, yt, x¢, 5¢) and (x¢, st),
while Nature observes (at, yt, Xt, St).
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Online learning setting

Learning setting
Fort=1,2 ...
o

@ (xt,s:) are sampled according to Q, independently from the past
© Simultaneously

the Learner observes x;, and picks an action a; € A

Nature observes G(xt, s;), and picks y; € Y

© The Learner observes the payoff my = m(ay, yt, x¢, 5¢) and (x¢, st),
while Nature observes (at, yt, Xt, St).

-
. _ 1
Aim: The Learner wants to ensure that my := T Z m; — C a.s. for
t=1
some target set C.
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Online learning setting

Learning setting
Fort=1,2 ...
@ Simultaneously,
the Learner chooses (p), ., based on (m., x,s: )<t 1

Nature chooses (qf(x’s)) based on (ar, Yr, Xr, St )r<t—1
(x,5)eX xS -

@ (xt,s:) are sampled according to Q, independently from the past
© Simultaneously
the Learner observes x;, and picks an action a; € A according to p}

Nature observes G(x;,s:), and picks y; € )V according to q¢bes)

© The Learner observes the payoff my = m(ay, yt, x¢, 5¢) and (x¢, st),
while Nature observes (at, yt, Xt, St).

-
. _ 1
Aim: The Learner wants to ensure that my := T Z m; — C a.s. for
t=1

some target set C.
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Assumption: fast enough sequential estimation of Q

The Player can build estimators (Qt)tZl of the unknown distribution Q such that
E [TV2(Qt,Q)] <c (log(t)® vt>2 (1)

v

Theorem : Contextual Blackwell approachability

If C C RY is closed convex, m is bounded, and (1) is satisfied, then

I(Pt)xex e1 such that v(qt?(x’s))(x,s)e;\fx{0,1},121 we have m7 23 C

if and only if V(qG(X’S))(X,s)eXx{o,l} A(p*)xex such that

m(p,q,Q) = / m(px,qG(X’S),x,s)dQ(x,s) EC
X xS

Contextual Blackwell strategy
Set m(p,q,Q;) := [ m(p*,q°>*), x,5)dQ(x,s). At stage t + 1, choose

(P¥11)xex € argmin _max (i — Mefe, m(p, q, Q,))
(P)x (@)
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Caveats

Caveat 1: the target set C has to be known

The results can be extended (at the price of some technicalities) to the
case where we only have a consistent super-estimate C; of C.

Caveat 2: computational cost of projection

Computing the projection ¢ can be computationally expensive.

Caveat 3: pessimistic Pareto frontier and slow rates

@ The adversarial setting leads to pessimistic Pareto frontier (trade-off)
between the different criteria;

@ The rates are governed by the estimation rate TV(Qt, Q), which is
typically slow outside the finite case.
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Stochastic setting:

A Contextual Bandit with Knapsack perspective

Small Total-Cost Constraints in CBwK, with Application to Fairness
E. Chzhen, C. Giraud, Z. Li, G. Stoltz; NeurlPS 2023
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Stochastic setting

Learning problem
@ The learner observes X = (xt, St) idQ
o The learner chooses a policy m; : £ — P(A), and picks an action
ar ~ (%),

@ The learner receives a feedback y; and a fairness cost ¢; such that
Ely:|Ft] = f(%, a¢) and  E[ce|Fe] = (%, ar).

@ The learner suffers a regret rr = OPT — y; (described below).

Example: Demographic Parity
clie,a) = | _2%1Pe |

_atst/pst
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Optimal policy and regret

Optimal static policy and regret
The optimal static feedback is

OPT(Q,f,c) := max Eq | > f(X,a)ma(X)
T EQ[ZaeA c()?,a)ﬂ'a()?)]gé-r 2eA

and the regret is
re =OPT(Q,f,¢c) — y:.

Learning Objective

Minimize the cumulative regret Z r+ while complying to the fairness
t<T
o1
constraint — ;ct <or (w.h.p.).
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Fairness as CBwK

CBwK problem
© we recognize a Contextual Bandit with Knapsack (CBwK) problem

@ but state of the art theory can only handle 67 = T~/4 (or X finite),
which is too large for fairness constraints, where we typically wish to

have 61 = O(T~1/?)
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Learning assumption
Assumption: UCB and LCB

We can built UCB and LCB such that with probability > 1 — ¢

FUCB(L ) = F(.,.) + Os(1/V/t)
e-CB( )~ c(.,.) + Os(1/V1)

Examples

Linear or logistic model : when

f(Xa a) = n(cp(x, a)Tea) and C(X7 a) = 77(¢(X7 a)T,Ba),

with n(u) = v or n(u) = e"/(1 + e"), we can use variant of LinUCB or
LogisticUCBL1.
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A first idea

Ideal: playing empirical optimal static policy

Choose a; according to a policy #; maximizing OPT(Qq, fU°B, &-CB). }

Issues
© The analysis of

OPT(Q7 f? C) - OPT(QU ﬁUCBa éil.“_CB)

produces some TV(Q;, Q) terms, leading to slow rates / large fairness
violation.

@ Solving OPT(Q;, #,U°B, £-CB) is computationally expensive
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Lagrangian version

Lagrangian formulation

OPT(Q,f,c) = max Eq | > f(X,a)m(X)
™ EQ[EaeA C(X’a)ﬂ'a(X))]SéT acA
= maxminEq | > 7(X) (f(x, a) — (\ c(X,a) — 5T>>]
acA
srong dusiy —» = min max Eq | 3 ms(X) (f(x, a) — (A (X, a) — 5T>>]
acA
=gy By [gg{f(X,a) — (A e(X,a) - 5T>}]

Two immediate benefits
@ for a fixed A the problem is separable, and Q can be forgotten;
@ we only need to learn the optimal \* € RY = parametric rates. ©

V.

Christophe Giraud (Orsay) Fairness in Learning IHP 63 / 69




High-level algorithm: Primal-dual descent-ascent

Iterate
o full optimisation on primal variable: pick

a; € argmax { (%, 3) — (A1, &(%,a) = d7) |
acA

o projected subgradient step on dual variable: update

At = (Ae—1 + 7 (Ee(Xe, ar) — 7)),

Issues

O Benign issue: we must replace 51 by 8 = o7 — O(1/VT) to
prevent from violation of the fairness criteria due to random
fluctuations

@ Major issue: to satisfy the constraints, we need to set v ~ ||\*||/V/T
®

v
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Choice of step size ¥

Bounds (informal)

For a fixed step size v > 0, we have w.h.p.

o ||constraint violation| = O <ﬁ+ w>

o Regret = O (7T+ ||A*||ﬁ)

So best 7 is v* = (1 V [|[A\*])/VT:
o ||constraint violation| = O (ﬁ)

o Regret = O ((1 v HA*H)ﬁ).
Mispecified ~

If we simply set v = 1/\/? then we have
||constraint violation|| = O ((1 v ||A*||)ﬁ)

®
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Tuning ~

Good old doubling trick
o Start from v = 1/v/T

@ Tracking the constraint violation at each epoch t, we can detect from
the bound

1V || A
||constraint violation|| = O (\/_—i— '|y| H)

if our current choice of 7y is too small

e If so, double ~.
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Adaptive algorithm

Adaptive version
Iterate: for t > 1

@ Pick at € argmax,c 4 {f?;()?t, a) — <At_]_, 6[-()?1-, a) — 69—)}

(] Update )\t = ()\t_]_ + 5—; (Et(f(t, at) — (5’-,—))+

Until zt: ¢ —(t— Tk +1)6% > O(VT)

T:Tk T

Then: increase k by one, set Ty =t + 1, and iterate again.
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Theory

Regret bound
For 61 > O(T~1/2), the above algorithm fulfills with probability at least

1.5
Sr<O(AVINIVT) =Y ea<or

t<T t<T

Suitable for fairness constraints ©

Optimality?
A proof scheme suggests that this regret is optimal. J
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Concluding remark

An important fairness issue in decision making, not addressed in this

presentation, is the problem of misalignment between evaluations and
objectives.

This question does not fall into the framework described in this

presentation, but it is an important question in order to improve overall
fairness in decision making.
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